MCP Tools Reference
Complete reference for all 19 Distill optimization tools
MCP Tools Reference
Distill provides 19 tools for optimizing LLM token usage. Each tool is designed for specific use cases.
File Reading Tools
smart_file_read
Read code files with AST-aware extraction. Returns structure overview or specific elements.
smart_file_read filePath="src/server.ts"
smart_file_read filePath="src/server.ts" target={"type":"function","name":"createServer"}
smart_file_read filePath="src/utils.ts" query="parse"
smart_file_read filePath="src/server.ts" skeleton=trueSavings: 50-70% compared to reading full files
Supported languages: TypeScript, JavaScript, Python, Go, Rust, PHP, Swift
code_skeleton
Extract only function/class signatures without implementation bodies.
code_skeleton filePath="src/api.ts" depth=2Savings: 70-90%
Compression Tools
auto_optimize
Automatically detect content type and apply optimal compression.
auto_optimize content="<build output or logs>"Savings: 40-95% depending on content
compress_context
Generic compression for any text content.
compress_context content="<large text>" targetRatio=0.5Savings: 40-60%
semantic_compress
TF-IDF based compression that keeps important segments.
semantic_compress content="<document>" targetRatio=0.5Savings: 40-60%
diff_compress
Compress git diff output while preserving essential changes.
diff_compress diff="<git diff output>" strategy="hunks-only"Strategies: hunks-only, summary, semantic
Savings: 50-95%
conversation_compress
Compress conversation history while preserving key information.
conversation_compress messages=[...] strategy="hybrid" maxTokens=1000Strategies: rolling-summary, key-extraction, hybrid
Savings: 40-70%
Build & Error Tools
analyze_build_output
Parse and compress build errors from npm, tsc, webpack, etc.
analyze_build_output output="<build output>" buildTool="tsc"Savings: 95%+
deduplicate_errors
Group repeated errors and show occurrence counts.
deduplicate_errors content="<output with repeated errors>"Savings: 80-95%
summarize_logs
Summarize verbose logs (server, test, build, application).
summarize_logs logs="<log content>" focus=["errors","warnings"]Savings: 80-90%
detect_retry_loop
Detect if Claude is stuck in a retry loop.
detect_retry_loop command="npm run build"Analysis Tools
analyze_context
Analyze content for token usage and get optimization suggestions.
analyze_context content="<prompt or context>"context_budget
Pre-flight token estimation before sending to LLM.
context_budget content="<content>" budgetTokens=5000session_stats
View current session statistics.
session_stats detail="detailed"get_stats
Get usage statistics for the session.
get_stats period="session"optimization_tips
Get context engineering best practices.
optimization_tips focus="prompts"Discovery Tools
discover_tools
Find and load optimization tools on-demand. Supports TOON format for compact output.
discover_tools category="compress" load=true
discover_tools query="logs"
discover_tools format="toon"
discover_tools format="toon-tabular"Categories: compress, analyze, logs, code, pipeline
Formats:
list- Default human-readable formattoon- TOON format grouped by category (55% fewer tokens)toon-tabular- TOON tabular format (most compact)
TOON Output Example:
tools[15]:
auto_optimize(content hint?:build|logs|... aggressive?:bool) → Auto-compress 80-95%
smart_file_read(filePath target?:{type,name} query?) → AST code extraction
compress_context(content contentType?:logs|...) → Compress verbose text 40-90%
...
[tokens] json:1189 → toon:531 (-55%)Utility Tools
smart_cache
Interact with the file cache for parsed content.
smart_cache action="stats"
smart_cache action="get" key="file:/path/to/file.ts"smart_pipeline
Chain multiple compression tools automatically.
smart_pipeline content="<mixed content>" mode="auto"register_model
Register the Claude model being used for accurate cost tracking.
register_model model="claude-opus-4-5-20251101"Token Savings Summary
| Tool | Use Case | Savings |
|---|---|---|
| smart_file_read | Code exploration | 50-70% |
| code_skeleton | API overview | 70-90% |
| auto_optimize | Any large output | 40-95% |
| analyze_build_output | Build errors | 95%+ |
| deduplicate_errors | Repeated errors | 80-95% |
| summarize_logs | Log files | 80-90% |
| diff_compress | Git diffs | 50-95% |
| conversation_compress | Chat history | 40-70% |
| semantic_compress | Documents | 40-60% |
| discover_tools (TOON) | Tool listings | 55% |
About TOON Format
TOON (Token-Oriented Object Notation) is a compact, human-readable format designed specifically for LLM inputs. It provides:
- 55% fewer tokens compared to JSON for tool listings
- Lossless representation of structured data
- Human-readable syntax with YAML-like indentation
TOON is particularly effective for tabular data and uniform arrays, making it ideal for presenting tool catalogs to LLMs.